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ABSTRACT

Let y(t,x,f) denote the solution of the Cauchy problem

t
y'(t) + f Id + a(t-s)]L y(s)ds = f(t), t > 0, y(O) = x

0

where d > 0 and L is a self-adjoint densely defined linear operator on a

Hilbert space H with L > AI I. Let U(t)x = y(t,x,O), V = U'. By analyzing

a related scalar equation with parameter, we find sufficient conditions on the

kernel a in order that f y (t)L-I dt < - (y > 0). These results and
0

certain resolvent formulas can be, used to study the asymptotic behavior of the
- "I

solution y(t,x,f) as t/f ' -. An application to a semilinear integro-partial

differential equation is presented. :_
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SIGNIFICANCE AND EXPLANATION

The resolvent formula for a nonhomogeneous Volterra integrodifferential

equation enables one to study the behavior of solutions of the equation for

large values of the time variable in terms of general properties of the

forcing terms in the equation. This technique depends on having "good"

a priori estimates obtained for the resolvent kernel.

When the solution takes its values in a Hilbert space, the resolvent kernel

is a function whose values are operators on that space. It is important to

know whether the norm of the resolvent kernel (or of its derivative) is integrable

on X0,-). For a class of equations which includes linear models for the dynamics

of viscoelastic materials, we develop sufficient conditions for the derivative

of the resolvent kernel to be integrable. JA -7 -
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RESOLVENT FORMULAS FOR A VOLTERRA EQUATION IN HILBERT SPACE

Ralph W. CarrI and Kenneth B. Hannsgen2

1. Introduction. We continue our study, begun in [2], of the nonhomo-

geneous linear equation

t
(1.1) y'(t) + f (d + a(t-s)]L y(s)ds - f(t) (t > 0)

0 -

y(O) = Y0 e H , ' d/dt

where L is a positive self-adjoint linear operator defined on a dense sub-

space D of the Hilbert space H. The kernel d + a(t) satisfies

1 + -+ + o +
(1.2) aE L toc(3R ,R) ( =+ (Oj. =

[0,-)); a is nonincreasing and convex

with a(-) = 0 < a(0+) < -, and d > 0,

1 -+and f belongs to B (R+, H), the class of locally Bochner integrable
Soc

functions from R to H.

Let u(t,A) denote the solution of the real equation

t
(1.3) u'(t) + A f [d + a(t-s)lu(s)ds - 0, u(0) = 1

0

define v = au/at,

U(t) f u(t,A)dE. , V(t) f v(t,X)dE.
JR 3R
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where {E } is the spectral family corresponding to L. In [2] we established

the resolvent formula

t
(1.4) y(t) = U(t)y0 + f U(t-s)f(s)ds

0

for the solution of (1.1), and we gave sufficient conditions for

a*(1.5) f fleUt Ilat <-
0

In particular, (1.5) holds if -a' is convex. (See Theorem Aafter Theorem 2.4

below; here and below we use the norm symbol for a space to indicate the operator

norm for linear operators from that space to itself.)

We are principally concerned here with V, the formal derivative of U.

V can be used with (1.4) to express y' (t), and it appears in the alternate

resolvent formula

t
(1.6) y(t) = F(t) + f V(t-s)F(s)ds

0

for the integrated version of (1.1), that is

t
(1.7) y(t) + f [(t-s)d + A(t-s)]L y(s)ds = F(t)

0

t t
where A(t) = f a(s)ds, F(t) = f f(s)ds.

0 0

Estimate (1.5), with V in place of U, is always false (see Corollary 2.1

below). Our main results, Theorems 2.3 and 2.4, contain the following:

THEOREM 1.1. Let (1.2) hold, and assume that -a' is convex. Then

(1.8) tIIY(t)L Lii" is bounded on ]R+, and f y(t)L- 2 11dt < -
0

-2-



The conditions of Theorem A for (1.5) do imply

(1.9) f llY(t)L-l'dt <"
0

Estimates (1.8) and (1.9) can be used with (1.4) and (1.6) to study the

asymptotic behavior of y(t) under various assumptions on the forcing term.

A variant of (1.1) is

t
(1.i0) z'(t) + f Id + a(t-s)I [L z(s) + q(s)]ds f(t) (t > 0)

0

z(0) = z 0

I+

with R H. Proceeding formally from (1.4) and the formal identity

ti

V(t) [-fd + a(t-s)]L U(s)ds
0

we obtain
t -1

(1.11) z(t) = v(t)z + f U(t-s)f(s)ds + f y(t-s)L 1(s)ds
0 0

In Section 3 we state a theorem justifying (1.11), and we use it to study the

semilinear equation

t
(1.12) y'(t) + f [d + a(t-s)] IL y(s) + N y(s)lds = f(t)

0

y(o) = y-0

Here N is a nonlinear operator with

(1.13) N(O) = 0 ,

sup -41 N 2 DI l -( II 2 1

where c : (0,a) - 3+ and c - 0 as A - 0,

-3-



11 11 = -11 I1 2  +  Il L 1I 2 ,  1l .11l -II .I 2  +  I1 1 2I 1 2

We also give an example of an integro-partial differential equation of the

form (1.12), to which our result applies.

The spectrum of L is contained in a closed subinterval of 3+; with-

out loss of generality we take this interval to be l,m). Then for

0 < ,

(1.14) llvct) l7Y <1 sup Ivt I- v Yt M
1< X< Y

1 Y(t)L-Y I < v (t)

We shall develop estimates for v from (1.3) and deduce estimates such asY

(1.9) from (1.14).

In Section 2, we state our results from v Y; they are proved in Sections

4 through 8. In particular, Section 8 contains a correction for the proof of

[2, Lemma 5.2]. We discuss the operator V and equations (1.11) and (1.12)

in Section 3; proofs follow in Section 9.

-4-



2. Statement of results for v . Throughout this paper, it is assumed
Y

that d + a(t) satisfies (1.2). We define

t t
A(t) = f a(s)ds, Al(t) = f s a(s)ds

0 0

a(T) = f a(t)e-iTt dt -- (T) - iTe(T) (T > 0)
0

(with 0 and e real; note that a is continuous),

-1 -1
D(T) = D(T,-) = a(T) - idT , D(T,A) = D(T) + iTA

Formally, the Fourier transform of v(t,X) (defined to be zero for t < 0) is

given by
-D(t)

(2.1) -- '

so v(',X) 4 L1 ( +) if D(T,X) = 0 for some T. By 14], O(T) > 0; moreover,

'P(T) > 0 (T > 0) unless a(t) is piecewise linear with changes of slope only

at integral multiples of a fixed number t0  (taken as large as possible) and

T is an integral multiple of 2w/t In all other cases, D(T,A) # 0 (T > 0);

then the hypotheses of [15, Theorem 2] hold, and v(.,A) E L(1 (+ ) and (2.1)

holds. Throughout this paper, we restrict ourselves to this case by assuming

(2.2) (T) > 0 (T > 0)

Estimates for v depend crucially on the size of V(T,X) whenY

Im D(T,X) =T[A-I-(T) - dT- 2] is zero. Choose and fix tI > 0 with a(t1 ) > 0,

and let p = 6/tI. We showed in [2] that 0 + 0 (T + -) and that the equation

(2.3) X-i 0(w) - dw- 2 = 0

defines a continuous, strictly increasing function w(A) on the interval

[X 0,-), where
-2i-

A0 = max{l, [80(p) + dp -2 ]

-5-



We extend w to [1,) if necessary by defining w(X) - p (1 < X < X0

We showed in [2, Eqs. (4.3), (4.24), (4.27)) that

(2.4) 1 A_(T 1 8( ) < 12AI(T - 1) (T > 0)

(2.5) low2 > a(t1 )A (A > 1)

1 AI-1) -1

(2.6) 1 A_(w 1< < C A (w" ) (A > 1)

where C1 = A0[12 + (2d/a(t1))] > 12. (We shall often suppress A as in (2.5)

and (2.6).)

For A > A0 we then have

X fo Iv~t,X)Idt>( I 8.w) y womw
A~ jvtA60 60 0w) -~- (w)

0

This proves our first result.

THEOREM 2.1. Let (1.2) and (2.2) hold, and let y > 0. If v e LI (P ), then

(2.7) sup r (T) ] < 1
P<TP<T)

Suppose, in particular, that a(0+) < -. From (2.6) we see that

1 2 110- a(t -X < w < 2 Cla(0+)X

1
In this case, for y = ., (2.7) is equivalent to

22

1 + 2
(2.8) sup I--T <

O<T<- (T

that is, a is strongly positive.

To find upper bounds for v , we first define a a(A) to be the unique

solution of

(2.9) a- A( - I ) = -

-6-



Then a : -R
+ - ]R+  is strictly increasing, since a(t) t A(t) is strictly

increasing. Using (2.6), we see that for X > 1,

C1 C1 11 1 1a(-)> - A(-) > C A1 ( ) > a
W -w W - 1W -

Therefore, since (2.5) holds,

2
(2.10) W < C1a and X < C2a ( > 1)

with C2 = 10C2/a(t1 ). a can grow faster than w; foi example, if

a(t) = t -(-log t) - 3 / 2  for small t, one shows from (2.6) and (2.9) that

KIW log < 2l K3A(log X) 1/2< K 4w log w

where the K. are positive constants. Note, however, thatJ

(2.11) lim lir A( 0
A- (-) 0

The next result relates a to v.

THEOREM 2.2. If (1.2) holds, then

8(8 a < sup Iv(tl)l < (8 + dC2 )o (X > 1)
2 )8(8 + dC2 ) -t>O 

The proof of Theorem 2.2 contains the following:

COROLLARY 2.1. Let (1.2) hold. There exist e, K > 0 such that v 0(t) >
1

K/t (0 < t < ); in particular, f vo(t)dt =
0

By (2.6) and (2.10), (2.12) shows that A-/2 v(t,A) is not bounded if
2 l-1/2v(,)

a(O+) = =. If a(0+) < -, (2.9) shows that a < a(0+)X, so 1 v(tA)

is bounded. The latter conclusion strengthens [6, Lemma 5.2]; it thus improves

Theorems 1 and 2 of that paper by showing that one may omit the term log(X/A)

1
from the definition of u without changing the conclusions. Our main results,

-7-



Theorems 2.3 and 2.4, generalize this part of 16] to cases where a(O+) =

As in [2], we shall need the technical hypothesis

(2.13) a(t) = b(t) + c(t), where b and c each

satisfy (1.2), except that either b(O+) 0

o1 c(O+) = 0 is permitted. Moreover,
00

St-lb(t)dt < and -c' is convex.
1

THEOREM 2.3. S (1.2) and (2.2) hold, and let 0 < y < . (i) If

T[0 (T) I ~
(2.14) sup < 00 1

then supt>0 t v Y(t) < w. (ii) If (2.13) holds and either

T[O(T)] 
I+Y-F-

(2.15) sup '( ) < - for some c, 0 < £ < y

or y > 1 and

T If)(T)])
2 + y

(2.16) sup 2 < 00
1 @2(r)

then

00

(2.17) f v (t)dt <
0

1

When y = -, the following criterion is sometimes weaker than (2.15).

THEOREM 2.4. If (1.2), (2.2), and (2.13) hold, and if

(2.18) sup () < 00
1

-8-
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then f v 1 /2 (t) dt < =.
0

For purposes of comparison, we restate our conditions for (1.5) from (2].

THEOREM A. Suppose (1.2), (2.2), and (2.13) hold. Then

(2.19) f sup ju(t,A)Idt <
0 l<X<

if and only if

(2.20) sup -- <

1 (T)

The hypotheses in these results satisfy the following implications:

1
(2.21) (2.18) * (2.14) (y = ) =  (2.20) - (2.16) (y > 1)

(see (2.4)). If a(0+) < , (2.4) gives us

1 -2 -2-a(t )T < O(T) < 6a(0+)T
10 1

1
so (2.18), (2.14) (y = ), and (2.20) all are equivalent to strong positivity.

-t
Thus while (2.15) obviously implies (2.14), the kernel a(t) = e provides

1
an example where (2.18) holds but (2.15) (y = .) is false.

If 0 < 8 < 1, the example a(t) = t-  satisfies (2.14) (y " 0) and

hence satisfies (2.15) for all positive y.

By considering a certain family of piecewise linear kernels, we can

demonstrate other differences among our hypotheses. We defer the proof to

Section 7.

THEOREM 2.5. There are kernels al= , ,. a and a
a, ~y 2' 2- 4 a3, a

satisfying (1.2), (2.2), and (2.13) and such that

-9-



1
(i) a satisfies (2.15) (y = -) but not (2.18).

1 2-

(ii) For each fixed y, a2  satisfies (2.14), but neither (2.15) nor (2.18)

nor (2.16) when y > 1 holds.

1
(iii) a3 satisfies (2.20) but not (2.14) (y 

=  )-

(iv) a4 satisfies (2.16) (y = 1) but not (2.20).

By (2.21), Theorem 2.3, and (1.14), the sufficient condition (2.20) of

Theorem A implies (1.9), as asserted in Section 1. The following corollary

shows that Theorems 2.3 and 2.4 contain Theorem 1.1.

COROLLARY 2.2. If (1.2), (2.2), and (2.13) hold, and if

t
f b(s)ds0

(2.22) lim sup 0 < 00

t-O+ f c(s)ds
0

then (2.18) holds, so [by (2.21) and Theorems A and 2.3] supt>0 tv (t) <

1

and (2.17) (y = -) and (2.19) are valid.

-10-



3. Statement of results for equations in H. A solution of (1.1) (or

(1.10) or (1.12)) is a continuously differentiable function y : H such

that L y : ii+ H is defined and continuous (in brief, y e C(R+,V)) and
b

(1.1) (or (1.10) or (1.12)) holds. Unless otherwise specified, integrals f
1 a

of H-valued functions are Bochner integrals in B ((a,b), H); Hille and Phillips

[7, pp. 59-89] give the theory of this integral. We recall from (2, Theorem

2.1(i)] that if (1.2) holds, then U(t) is strongly continuous on H and

II I -_ 1 (t -r

Our first result concerns V(t) as an operator from D to H. The1

results of Section 2 can also be used to study V(t)L-y (Y 1 ).

THEOREM 3.1. (i) Suppose (1.2) and (2.2) hold and

(3.1) sup <
1 P<T(00

-12

Then for t > 0, V(t)L- / 2  is a bounded operator on H, strongly continuous

on 3t . Moreover,

d

(3.2) V(t)y =T U(t)y (t > 0, y ).

(ii) If a(O+) < -, we may omit (2.2) and (3.1) in (i); moreover, V(t)L- 1/ 2

is strongly continuous and uniformly bounded on JR

Next we state a representation theorem for solutions of (1.10).

1
THEOREM 3.2. (i) Let the hypotheses of Theorem 2.3(ii) (y = ) or of Theorem

2.4 hold. Let z 0  D, let f E C(IR, H) with f(t) c P (t > 0) and

1,, -+ -
L f E 8 (IR, H). Assume that g C (+, DI). Then the function z(t)

- f 2toc ,s toc 1

given by (1.11) is the unique solution of (1.10).

(ii) Let (1.2) hold with a(0+) < -. Let z0 and f satisfy the hypotheses

of (iW, and let g E B1(r, Di). Then the conclusion of (i) is valid
o-oc -

-11-



Remark. In (i) above, we need IIV(.)1/2 11 E Llo(- ), and by (1.14),

the conclusions of Theorems 2.3(ii) ( = 1) and 2.4 imply this.

Miller [13] shows how to combine the resolvent formula for Volterra equa-

tions with fixed point theorems in order to prove global existence theorems

for nonlinear equations. We use this method and Theorem 3.2 to obtain a result

for (1.12).

1THEOREM 3.3. Let the hypotheses of Theorem 2.3(ii) (y = z) or of Theorem 2.4

hold, and let y0 D. Let f satisfy the hypotheses of Theorem 3.2(i) with

f11111++ I2f21+f=f1+ f 2P f E B (JR , D) , f 2E B JR, V) . Let

N :{x c V I IxIV < a) - D

satisfy conditions (1.13). Then if p EDy 0110  + 11f111 05JR ,V) + 1If2 11 )

and A > 0 are sufficiently small, (1.12) has one and only one solution y

such that IIY(tll < (t E+

A simple example illustrating Theorem 3.3 is the problem

t
(3.3) u t(t,x) = f a(t-s)fu xx(s,x) + u(sx)u x(s,x)]ds + F(t,x)

0

u(t,0) u(tur) = 0 (t > 0), u(0,x) = u0 (x)

We take H = L2(0,7), L y -y" on D, the space of differentiable functions

y on [0,n] with y(0) = y(n) = 0, y' absolutely continuous, and y" E H.

D consists of absolutely continuous functions which vanish at 0 and n and

have square integrable first derivatives.

In terms of Fourier sine series

y(x) = csin nx
n=l

-12-



V and V are characterized respectively by the conditions In4c2 < and

1 2 1
nc < and

L Y(X) ncn sin nx
n-

Thus liL1/2yJJ - J1Y' 1 (y e Dl). Note also that if D ,

ly'(x) 12 < II nlcn1) 2 <  n 2  4c2 =211L YOI

k nI) < n2 I n~c n B2 ILy1
n-l n-l nl

(0< x < w), so also Jy(x) J j B y jLl (0 < x < 7r). Using these facts,

one easily shows that N y yy' satisfies (1.13).

The nonlinearity uu in (3.3) could be generalized, but our theorem does
x

2
not cover such nonlinearities as u or 1l= [h(Ux)]x; N, is important in

viscoelasticity theory.

MacCamy (11, 12], Dafermos and Nohel [3], and Staffans [17] have established

global existence results for (3.3) with N replaced by N and a(0+) < -.

Londen's global existence results (101 deal with (1.1) with L replaced by a

maximal monotone (nonlinear) operator and a(0+) < -, a'(0+) = --. Travis and

Webb [18] prove a general local existence result for hyperbolic semilinear

equations, including (1.12) when a(0+) < 0.

-13-



4. Proofs of Theorem 2.2 and Corollary 2.1. We redefine a', b', c'

where necessary to make them continuous from the left on 3R da' denotes

the Lebesgue-Stieltjes measure on ]R+ . We adopt the conventions

V ftd't - . Iy
f f(t) da'() f F da, f f(t) da't) f f da'
0 (0,y) x [x,y)

(0 < x < y). For this proof we define 6 = a-1.

Recall that when (1.2) holds,

(4.1) Iu(t,X)j < 1 (t > 0, > 0)

(see [5], [2, p. 965]). Then (1.3), (4.1), and (2.10) imply

(4.2) Jv(t,A) < A(td + Ait)) < a + Ad6 < (l + dC2 ) (0 < t < 6)

For 6 < t < =, we make the change of variable s - t-s in (1.3) and

integrate by parts to obtain the identity

6 t
v(t,X) = A f a'(s) f u(r,))drds

0 t-s

t t t
+ X f a'(s) f u(r,A)drds - A(d + a(t)) f u(s,A)ds

6 t-s 0

- V1 (t,A) + v 2 (t,A) + v3 (t,X)

Clearly,

6

(4.3) Ivl(t,A)l < -A f s a'(s)ds < AA(i5) =
0

Since a' is monotone, we can use Fubini's Theorem to see (with X

suppressed) that

-14-



t s

f a' (r)[u(s) - u(s-r)ldrds
a 6

t t
- f a'(r) f [u(s) - u(s-r)ldsdr

6 r

t t t-s
- f a'(s)If - f ]u(r)drds

6 s 0

X-v 2(t,X) -ft a'ls) f ulr)drds(t > 6)
6 0

Therefore v2 (t,A) is locally absolutely continuous in t, and

av2  t ta' (t) f u(sL)ds + f a'(s)[u(t,A) - u(t-sX)]ds
0 6

a.e. (t > 6). Integration by parts then yields

1 v2 t
1 u(t,X))[a(t) - a(6)] + a'(6) f u(rX)dr

t-6

t t
+ f [f u(r,X)drida' (s) a.e. (t > 6)

6 t-s

so
1 av2 1

(4.4) 1 j'v-- - 2a(6) - 26a'(6) - 2a(t) + ta'(t) a.e.

Since

1 a2 - a'(t) J u(sA)ds - (d + a(t))u(t,A) a.e.
X at 0

1 av3
1 -- < -ta'(t) + d + a(t) a.a.

Adding this to (4.4) yields

1 (v2 +v1
(4.5) a 2t < 2a(6) - 26a'(C) + d a.e.

Suppose there exists t > 6 such that

-15-



(4.6) Iv(t,X) l > (8 + dC2) .

Let I [t -6, t +6], and observe that if s c I,

(4.7) Iv~sX)l > Iv(t*,X)I - 2 suplv,(r,X)I - 6 ess sup a ,(r,X)
rEI rEI

> (8 + dC 2)a - 2c - 2X(6a(6) - 6 2a' (6)) - d6

here (4.3), (4.4) and the absolute continuity of v2 + v3 have been used.

Integration by parts shows that

62

0 < f t 2da'(t) = 2A(6) - 26a(6) + 6 2a'(6)
0

Combining this with (4.7), we obtain

Iv(sA)I > (6 + dC2)a - 4XA(6) - d6 (s ( I)

-1
But 6 = = )A(6), and since (2.10) holds,

Iv(s,X)i > 26 - 1 (s E I)

Thus by (4.1) and the Mean Value Theorem, (4.6) has led us to the contradiction

2 > lu(t*,A) - u(t*-6,X)j > 6.26-1 = 2

Since (4.2) holds, the second inequality in (2.12) is established. It follows

that

u(t,A) > 1 - (8 + dC )ot (t > 0)

1 -

so u(t,A) > for 0 < t < [2a(8 + dC2 )] - I = 2T. Then by (1.2) and (1.3),

(4.8) lv(t,x)l > 1 A 8 ) = (T < t < 2T)
2A( -8(8 + dC 2  8(8 + dC2

This proves Theorem 2.2.
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If a(O+) < w, the second inequality in (2.12) is essentially contained

in Levin 18]. The idea of writing v - v 1 + + v 3 in case a(O+) - - was

introduced by Londen [9, Lemma 2].

For Corollary 2.1, let T - T(A) as in (4.8). If t > 0 is sufficiently

small, we can find A - At  such that T() < t < 2T(). Then by (4.8),

a > 1v 0 (t) >_ t > 8(8 + dC 2) - l6t(8 + dC2) 2

as asserted.
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5. Proof of Theorem 2.3. Throughout this paper, the symbol M denotes

a finite positive constant, independent of A(1 < X < -); the numerical value

of M can change each time M appears. We assume (1.2) and (2.2).

(2.11) and (2.12) immediately yield

(5.1) v (t) < M (Y > 1, t > 0)

Choose w - M () so that

1 *
W < T < 2w and 4P(w ) rin P (T):

-w<r<2w

for instance, w could be the smallest such number.

We shall establish the following estimates.

(5.2) jv(tA) < M(1 + t (t > 0)V t (W

If (2.13) holds,

* ON w*2 (w -

(5.3) jv(t,X)I < M[(l + ( )Q(t) + (1 + 2( *))t (t > 1)
sp (W S (W

where Q E L 1(1,-).

Before proving (5.2) and (5.3), we show that they imply the conclusions

of Theorem 2.3. Note that

2t 2t t
f sa(s)ds < a(t) f s ds - 3a(t) f s ds < 3A1 (t)
t t 0

Therefore,

(5.4) A1 (2t) < 4A1 (t) (t > 0)

Using (5.4), we can combine (2.4) and (2.6) to see that
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_ 1(55)< xe (T) < M (w < T < 2w)M .. 2 .

Then if (2.14) holds, (5.2) gives us the conclusion of Theorem 2.3(i).

If Y > 1 and (2.13) and (2.16) hold, we use the algebraic inequality

(5.6) 20/ < 1 + (0/v) 2

to deduce from (5.3) that

, )*02 1 *

Iv(t,x)l < M[Q(t) (1 + w ) + t - 2 ] (t > 1)21"

Then by (5.5), (2.10), (2.11), and (2.16),

x-Yjv(t'A) l < M(Q(t) + t-2 (t > 1)

Since (5.1) holds, (2.17) is valid.

Now assume (2.13) and (2.15). If 0 < y < 1, we deduce from (2.15),

(5.2), and (5.5) that

(5.7) Iv(tA)j < M t-1x - E  (t > 0)

If p = (l-y)/(l-y+E), then 0 < p < 1 and p(y-E) + (l-p) = y, so (2.11),

(2.12), and (5.7) tell us that

(5.8) Iv(t,X)l = Iv(t,X) jp+(l -p) < MxYt - p  (t > 0)

if y < 1. We conclude from (5.1) and (5.8) that

1
(5.9) f v (t)dt < - if (2.15) holds

0

Choose 6 < c/(y-c), 0 < 6 < 1. If 1 < t < A, (2.15), (5.2), and

(5.5) imply that
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(5.10) Iv(t,A)l _<Ma + 4 ,y c
( )

y -1-6< MX t - -  .

6 -E+E/6 1-6
If X < t , then ) / < t-, so (2.15), (5.3), and (5.5) yield

2 .1
Y-E W_________(W 

2
X2y-

2
,- ti1 6 !

fvt,X) I M YEQ(t) (*l+Y2E("c+- \ *ON t2X- € + /

Since y - E < E/, another application of (2.15) shows that

Iv(t,A)I < MAY[Q(t) + t - 1- ]  (XE < t )

This inequality, taken together with (5.9) and (5.10), gives us (2.17).

We have shown that Theorem 2.3 is a consequence of (5.2) and (5.3), which

we prove next.

When (1.2) and (2.2) hold, one has the inversion formula

Ref!-f t (TD(T) -DT
(5.11) wv(t,A) = Re2 e' 2 - )dT (t > 0)

0 D (T,X)

where the integral is absolutely convergent at both T = 0 and T =

This was established in (1].

The next lemmas will enable us to estimate D and D'.

LEMMA 5.1. If (1.2) holds, then

(5.12) 'p(T) > IA(T-1 ) - 3TA(T- I)] (T > 0)

Proof. Two integrations by parts yield
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(T) - T- 2 ( - cos Tt)da(t)
0

>1 1 /T tdlt40

> 1 f (t 2 - Tt3)da' (t)
0

= -[A(T-) - 3TA (T-1 )] + a(T-l)
2 1 4

1x2
Here we have used 1 - cos x >_ x (0 < x < 1) and the fact that da'

is a positive measure. Since a > 0, the lemma is proved.

LEMMA 5.2. If (1.2) holds, then

22(5.13) 2(T) + (L) 2 MD, ) 2 1T>7p

I I1 1

(5.14) A(T - 1 ) < MID(TA) I  (T - [2! p , -1 ] U [2w,-))

Proof. [2, Lemma 5.2] states that (1.2) implies
1

(5.15) IT-WI :j MAID(T,) I (T >_ W)

(5.16) TA(T- 1) < MID(T,X) I ) 1

In Section 8 below, we give a corrected proof of this lemma.
1

For T > 1 w, (5.13) is a trivial consequence of (5.15). (2.6) and (5.15)

show that

1 -1< 1 -1) 1
(5.17) -TA (T < - TAI(1 < L T/X < (-w) /X

10 1 -A 1  1 -j/ 2

< MID(T,X)I (T > 2w)

1 1

Thus if T E [2 p , w] U [2w,-), (5.12), (5.16), and (5.17) imply that
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(-1) _-1
A(-r )< 2P(T) + 3tA(T - ) < MID(TX)I

as asserted in (5.14).

1 1
If p< t< 0 , by (2.6),

< < C wAI) < C ()-- 1 1 T

By (5.14), this implies (5.13) for such T, and our proof is complete.

Recall from [2, Lema 4.1) that when (1.2) holds we have

(5.18) 2- 3 /2A(r-1) _< ja(T) < 4A(T-1), 1a'(T)j :_ 40AICT-I) (T > 0)

We now deduce (5.2) from (5.11). If d > 0, (5.18) shows that

ITD'(T) - D(T)I < MT- (0 < T < p)

while (2.2) gives

(5.19) ID(T,X)l > max{p(T), (d - T2)/T} > 1/MT (0 < T < P)

Thus

(5.20) p/2 - D(T)j dT < M

On the other hand, if d = 0, (5.18) implies that ITD'(T) - D(T)I < MA(T-

and

(5.21) ID(t,X)I >max{2- 3/A(T) - T, P(T)}

so (5.20) is again valid.

By (2.10), (5.18), and (5.14),

-22-
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(5.22) ] + f ' D'(t) - D(-) aT < M f A(-1)dT

p/ 2  2w ID(T,X) I2  p/2 XA2 (T-1)

MO<= M

XA(a

Next we use (5.18) and (5.13) to obtain

(5.23) f ID' (-) - D(T) dT < MX A(-) d

-1--

2C i 1 ID(Tr,X)l 2  2C l1 O T2

< MAA(a-I )o-  < M

Before estimating the final piece in (5.11), note that (5.18) implies

z-1 * * * 1
(5.24) MA(T 1 < PW* ) + W ( ) (1 W < T < 2w)

2w2

(5.25) f 2w- D r) T < MAA(2w - 1) I 2 dT
wID(rA)12 -- * 2 2

D~r,) W [A PW*H + 1t-l)I
2 2

MA - * *

< < M(I + ,

Thus from (5.22), (5.23), and (5.25) we obtain (5.2).

Next we turn to (5.3). Assume (2.13) in addition to (1.2) and (2.2),

and write (5.11) as

(5.26) v(t,A) = Re{L-l v(t) + ix- v2(t) + A-3 v (t) - v4(t,X) - v5(tl) }1 3 v4 t) 5 t,

where (these v. are unrelated to those of Section 4)
-
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() eit D' (T) dtv1(t) = f e 2---

0 D(2)

P Te It 2TD' (-)
tv 2 (t) DD (- )I

P. 2

tv (t) = f e t dT
0 D3 (T)

tv 4 (tIX) = f ei Tt T D + 6_2)X)} dT2D T(T X))D(, D(,

0

tLV5(t'X) = f e iTt (tD' (T' - D))T

p D 2(T,)

We shall show that

(5.27) v 4 (t,A) s <M{[l + * ( q(t) + 2(*)} (t > 1)
( ) (p (w*)t 2

where

q(t) = t + t 2 f b(s)ds -lb(t) - b' (t) (t > 1)
0

We know from [2, p. 9721 that q E LI (1,). Moreover, from [15, Theorem 2]

and the fact that

Re f e ta(t)dt > 0 (Re s > 0, s $ 0)
0

under our hypotheses [4], it follows that v(.,X) E L1 (3+). Then by (5.26)

and (5.27), each of v1 , v2, v3 belongs to L (1,-). (5.3) now follows

from (5.26) and (5.27) with Q = Iv1l + Iv21 + Iv31 + q. We have reduced

(5.3) to (5.27).
i iu)

Let J(u) = iu(l - ei ) - 2(1 - iu - e ) and recall from [2, (4.9)]

that
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b'(T) = 3 f J(-Ts)db'(s) (T > 0)
0

For t, T > 0 define

0 t
80 (t,T) = T- 3 f J(-Ts)db'(s)

0

o(t,T) =i T- 3 f Jl-Ts)db'l(S)

t

(5.28) A(t,T) = 0O(t,r) + C'(T) + idT - 2 = D'(T) - 8 (t,T)

In [2, Lemma 5.1] we proved by direct estimates that c E C 2( + ) ,

a80/3T E C(R x ]R+ ) and

-2

(5.29) c,€)< 6000 f 1Ts 2c(s~ds (T > 0)
0

(5.30) I8a(t,,r)l < 40t- 2(b(t) - tb'(t)) (tT > 0)

(5.31) (t,T) < 500T f b(s)ds (t,T > 0)
0

1/T
(5.32) I8(t,t) < 40 f sb(s)ds (t,t > 0)

0

i/t
(5.33) I'(i)1 <40f s c(s)ds (T > 0)

0

Write v4 = v4 1 + v4 2, where

(5.34) tAv (t,A) = f(eTt- T [A ( t ' )  + i - --2 + 1 + I dr
0 A D (T)D(T,X) D(T) D(T,X) D(T,X)

fit[ - tt) 2 + (,

(5.35) tAv (t,A) = e D (2) D(1,
42 23T D(T) D(T,)
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Likewise let v5 -v 51 + v5 2 , where

(5.36) tXv5 1 (t,X) = f eiTt TA(t,T) - D(T) dT
p D2 (T,A)

(5.37) tXv5(tX) = fe D TO(tT)
p D (T,X)

Now integrate by parts in (5.34) and (5.36) to obtain

(5.38) iAt 2v (t,X)= ei-t+p3[A(t'p) + i x- 1]  2 +41 X2D3 (p)D(PX) D(p) D(pA) D(pA

S(3T 2 [A(t'T) + ix-,T)) + T2A (t.T)
1 1 fe31. T T 21

D(0+) 0 D ()(TT, X) ) D(T,A)

3 (A(tr) + iX- [3D'(T)D(,X) + D(T)D (T,X)] 2 1

4 + D(T,,)D4 (t)D 2 (T, )

3 1 D (TA) A DT (TX)

TA(t,r) +i - + 1 D dT

D3 (T)D(T,A) D 2(T) D2 (TA) D (T,X)

(5.39) _ iAt 2v (tX) = eipt (pA(t,p) - D(P))
51 D 2(p,A)

0et.A(t,T) + TA (t,T) - D'(T) D (T,A)(TA(t,T) - D(T))
+ f eITt [ 3 \dT

p 1) (T, X) D (T,X) d

Here (5.18), (5.32), and (5.33) have been used to simplify the boundary terms.

In (5.38), I/D(0+) is zero unless d = 0 and a E L1 (X+ ). Our estimates

(5.18), (5.19), (5.21) and (5.40) below show that the integrals in (5.38) con-

verge absolutely.

By (5.18),

D (T,) A1 (T 1 ) + dT- 2 + X
2 " --

D (T,) ID(T,X) 12
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If d > 0, (5.19) shows that

(5.40) p D (,)

If d = 0, we recall from [15, (1.21)] that

1 A1 (T- 1 )
fA- dT <
o 2'-1 )

0 A 2(T-

Thus by (5.21), (5.40) holds in this case as well. It is now a straightforward

matter to use (5.18), (5.19), (5.21), (5.40), and (5.29) through (5.33) to

estimate the terms in (5.35) and (5.38) and deduce

(54 )Iv4(tX) i <_ Mq(t) (t >_ 1)

We turn now to v5 . The following estimates, direct consequences of (2.6),

(5.18), and (5.29) through (5.33), will be used without explicit mention for

estimates of the numerators.

I A(t,T)1 + ItA r(t,T) I + ID' () < M[A(T -1) + t2q(t)T- 1  (t > 1, T > I P)T 1 2

ID rlT,X) < MAIIT-1 ) < MT-MI(AI - I )  (T > p)

tr 1 (t'.r) < Mtq(t) tt(t > 1 > 0)

1

(5.42) IA (tT) I + ID(Tl/ ) A(T / (t > 1, T . 1 P)

JA(t,Tr) + ITA r(t,T) I + ID' (r) l < M(X- 1  +  Tr-1t 2q(t)) (t > 1, Tr > - W)2

D (Tr, A) I _ M)- 1 (T > " W)

We recall as well that

(5.43) A(.r- 1) > A(1/2CI1°) 
> A(a-I1)/2C, = /2CI1 (Tr < 2Ci1 )

and

-27-



TA(T - ) > a(T- ) > a(t 1 ) (T >

We use Lemma 5.2 and its simple consequence

(5.44) TA1 < MID(T,X) I (2w < T < )

to get

e f/2 2C11 IA(tT) + TA(tT) - D' ( T) I
(5.45) If +f 12 , dT

[p'2  2w JAID(T,X)1
M 2Ca A (T1-) + T- 1t2q(t)

< -f -d_____

p/
2  A2(T

- 1 )

2ClC2M 
1 

t2q(t)
< f -1

p/ 2  tA(T TA (T

< Ma +Iti q(t) < Mt2 qt
- a 1at) + A(a-1 9

and (here (2.6) is used as well)

(5.46) [A(t,T) + TA (t,T) - D'(T)i

2C1o XID(T,X)1 2

< A f 1 + T q-1t(t) dT < Mt 2q(t)

2C I G (T/A)2

Similarly,

(5.47) [.p/21fw/2 2C1o a +0 IDT(T'A) IITA(tT) - D(T) dT

[p2 2w 2C 1(y XID(T,X) 13

<M(I+A(O
- ) _) < M

2C a T
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1

On [-!w, 2w] we use (5.13) to estimate the denominator. ThiE yields

2w IA(t,T) + TA (t,T) - D'(T) d(5.48) f T d
w/2 XID(T,X) 1

2w -1i 1

MX fw X +T t2(t) dT

w/2 ,XRp(W*)]2 + IT-W1 2

00

< M(i + t 2 q(t)Xl) f * ds 2
0 [XV(W )] + s

Mt2 X - I  Mt 2q(t) (w< t <Mtq8() )
X(,W )

The last inequality above used (2.5) and (5.5). Similarly, using (5.24),

(5.25), and (5.6), we obtain

(5.49) fI dT < M fXA(2- 2/)dT

w/2  AID(T,X) 13 w/2 [ ()Ap(w 2) + IT-WI 21 /

MA2- )  [ 1* * , •
MA(2w- < M [p(w) + w e(* )]e(w*)

- A 2 (*) -- 2 (*)

M(8(W ) W e 2(w*) < M(1 + 2 (W*( ) 2(*) - 2( *)

Thus the representation (5.39), along with the estimates (5.45) through

(5.49), gives us

W* * W- (*(5.50) V5t,' < Mtq(t)[i + w(,) -2 + " [
lv , t ~ _:'P( * ) 12 (W'p(w.) 'p()

As in (5.45) through (5.48), we derive
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w/2 2CIa

(5.51) if + f + f" I r (t'") I dT < Mtq(t)
P/2 2w 2C1o AID(-,X) 12

1

Again we use (5.13) on [! w, 2w)]. This gives us

2w T18(t,) I d t q(t)* )]

(5.52) f 2 d * * jMtq(t) (w
w/2 X D(T, X)J - ( ) (W (W )

where the last inequality invokes (2.5) and (5.5).

Then (5.37), (5.51), and (5.52) imply

(5.53) Wv52 tX(5.3) V52(t,X) l < Mq(t)[i + ' (-,)
SP (W

But V5 = v51 + v52' so (5.41), (5.50), and (5.53) give us (5.27). This,

in turn, gives us (5.3).

This completes the proof of Theorem 2.3.
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6. Proofs of Theorem 2.4 and Corollary 2.2. To prove Theorem 2.4 we

need (6.1), (6.2), and (6.3) below, which are consequences of (2.18), (5.18),

and (5.24).

2 -1 * 2
A (T ) a(l/ _12_(W _____1

(6.1) -* < M _a1/*<)12  (W + * 1))2
, , _<M*( ) + *(, ) <M (z < r <_2)

'P(W) o (W ) (W 2

Thus,

(6.2) + . < 2 Ia(l/w)I < MA(2/w) <
(6.) 1 ) <2 (* ) ( *

'(W - V(*) - W*)- A(2/w)

M CIM
< ___< <MAc- I

- A(l/C10) - Al<-l) -

Furthermore, by (2.21), (2.18) implies (2.20), so

21* 
*- *(6.3) 1 + W 2 (W* < (1 + W )( (1 + *( < MAO-

0p (*) -(= ) (W

Comparing (6.2) and (6.3) with (5.3) shows that

1

(6.4) Iv(t,A)I < MQ(t)Aa -  < MQ(t)A , (A > 1, t > 1)

Using (5.2) and (6.2) it follows that

(6.5) Iv(t,A) I < MAO- t-  (A > 1, t > 0)

Combining (2.12) and (6.5) yields

1 1 1 1 1

(6.6) Iv(t,X) I= v(t,X)I12 +  < Mo (XO-lt-1) " = M 2t

(A > 1, 0 < t < 1)

Theorem 2.4 is an easy consequence of (6.4) and (6.6).
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Proof of Corollary 2.2. If a(O+) < , then [14, Corollaries 2.1 and

2.21 imply that c is strongly positive. Then a is strongly positive. As

noted in Section 2, strong positivity implies (2.18) (which in turn implies

(2.14)) in this case, so our assertion follows from Theorems 2.3(i) and 2.4.

If a(O+) - -, we follow the proof of [2, Cor. 2.1(ii)] for this case.

There we invoked [16, Thin. 2(iii)] to obtain

(6.7) O(T) > a A2(T - I )  (T > maX{px-1I

8820

(I, B, x0 are positive constants whose values are irrelevant here) at an

intermediate stage of the proof. Since A(T- ) > TA (T-I) and (2.4) holds,

we deduce from (6.7) that

2

P(T) > T- -12 (T > max{p,x })
882

But p and e are continuous, so (2.18) holds, and our conclusions follow

as before. This completes the proof.
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7. Proof of Theorem 2.5. Each example has the form

(7.1) a(t) I c kbk t)
k=O

where

bk(t) = (1- 2 kt)X k(t)

Xk  is the characteristic function of the interval (0, 2 - ] and 8 is

an integer greater than or equal to 2.
_8k

Each ck will be positive and we shall have 2A() =2 < c

then (1.2) and (2.2) hold. (2.13) is clear because a(1) =.

For any kernel of the form (7.1),

aCk (1 - cos 2- T)
(7.2) P(T) c k 2 2

k=0 T

Note that

1 2 1 2
(7.3) u u < I - cos u < - u (0 < u _< 1)

Therefore,

(7.4) P(T) > Cm+l 2 - m+ l  Cm+l (2 Bm < T < 2 M+ l

-4 4T 64r8

On the other hand, if we let i = 28 (2n), (7.2) and (7.3) show thatn

(7.5) 'P('1 ) < -1 2 8
n --2 c k2

k=n+l

From (2.4) we get
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m i/T k 2-  k
(7.6) _e(T) < IC I t(l - 2 t)dt + c k f t(l - 2 )dt

k-O 0 k-m+l 0

n am 20k (2m a m+l

I C + c 22 < T 8 2
2T k=O k-m+l (2 --

n fI/T nt ( 1 n

(7.7) 58(T ) > I C f t - n t)dt >  2 1 ck
k=0 0 6T k=0n

Now we need only choose 8 and ck appropriately.

k22-

For al, let 0 = 2, ck k2 , 0 < E < 1/14. By (7.4), if

2 m 2111+1
22< T - 2

3 m
2m+l -( 2 )/2P) > -- 2 > log2 log2 T/4T

Since (7.6) holds and

(7.8) (x+y) r < (2x) r + (2y) r (x,y,r > 0)

3 3 3
-- -- E k-2) - 2 m 2211+1

1 2 1 2  1 2 ( -0 -7(2 -
1- Ol(T)] T -+ [ Ck) + ( Y k (2 <T <_

k=0 k=m+l

The first sum on the right is dominated by c ; the second sum is dominatedm

by its first term. Thus

3 3 3]- - - -(2)m-)2
-- (T) < Tr c ) + ((m+l)2

- 7

150 m

21 7 E

< (1 + log 2log2 )3/2(T + + 2- 5(2)m (2 m< 2 m+

Since 6 and P are continuous, we deduce that (2.15) holds with y = 1

by (7.5) and (7.7),
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I(T <_ in+l) 2- 3 1(2 ) n -

n -

900 T2n2(T n 2 2- 3 (2 )n-i

n n-41 2

so T2 8 2(t)/ ln) (n-), and (2.18) does not hold.
n n n

For a2 ,y' let a = 1 + 2y, ck = 2 Note that

_ ~l2 -0k + l  -yc~
Ck1 < 2- 3  < i, Ck--l> 2Y > 1

Ck2-20
k  Ck

Therefore (7.6) implies

Cm -2B (m+l) am 2m+l
(7.9) B(T) < K(y)[- + Cm+ 1 2 (2 < T < 2

T

for some number K(y) < -. Using (7.4), (7.8), and (7.9), we get

1+Yc -2(y+l) + 1 c1+y2 (-1-2y), m+l ]

TO+(T) < 2 1+YK(,)[cm+l 1) + +

P(T) - L C+iT 11+2y) + Cm+12- 8 (m+l) J

< 2 1+K(y)[i + 2y[(l+ )M+l-2(l+2y)m+l]

< 22+yK(y) (26m < T <_ 2in+l

Thus (2.14) holds. On the other hand, (7.5) and (7.7) yield

(7.10) P (T) < 1 + I)c 2 8(T ) > -2
-(1 +C-() , 30

n -2 -Y n+l T n - n n1-2 n

From (7.10), our final conclusions about a follow easily.
-,3
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k

For a3  we take 8 2, ck = 2k , and for a4 we take 8=2, ck =1.

The estimates are similar to those given above, so we omit them. Example a4

appeared in (2].
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8. A lemma. In this section we prove

LEMMA 8.1. If (1.2) holds, then

-ll 1
(8.1) ID(T,A)) M-tA (T- )-P < T < I W)

18 2 >-2

(8.2) LIb(T,k)I >Ml 2L 1 WT>1

This is the same as [2, Lemma 5.2], but our proof in [2] contains an error.

1
Proof. When I p < T < p = w or T > w, the proof in [2] is valid,

so we exclude those cases here. [2, (5.11)] is not correct when T < W.

When we integrate the inequality

3 1 -

-e' (T) > I f r a(r)dr > a(t - )
- 0 -Ot

3

[2, (4.4)] from T to w, we obtain

(8.3) Irm D(T,A)l i T(W-T)(W+T) / r a(r)dr
20 20 0

lIT1
+ f ra(r)dr (p < W, p < T < W)

1/W

Since

f r a(r)dr < 15 f r 3 a(r)dr
1/W 0

we have

/W 2/ li/
(8.4) 16 f r 3a(r)dr > f r 3a(r)dr > f r 3a(r)dr (T > I W)

0 0 0

By (8.3) and (8.4),

(8.5) I m D(,X)l > (r-W)(0(+W) f1/T r 3a(r)dr + y- f 1 ra(r)dr0601/

-37-
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1

for p < w, . w < T < w. Except for a constant,this is the same as

(2, (5.11)] for these T, w, so the remainder of the proof of (8.2) as given

in [2] is valid. We need only establish (8.1).

Note that

(8.6) ID(-r, X) I > P(-r) > M > M'rAI(T-1 P < T < P)
1 1

If 1 w < P, then (8.6) implies (8.1). Otherwise we consider two cases.
2 -

Case 1. If p < T< w and A(w 1 > - then, as in the proof

of Lemma 5.1,

(8.7) IRe D(t,X) I = P(T) > - f t da' (t)
0

> f t da'(t)
0

>1 [A(w-l) - 3wA (W-1  1 a(w-l)

> 
-A( ) >- wA u-i) > TA ( u- 1

-4 -4 1 -4 1

Thus (8.3) and (8.7) imply

l/T1/

(8.8) V'" ID(T,X) j > T / I ra(r)dr + - I ra(r)dr
1/w 0

T -
>- A (T- ) in Case 1
-160 1

1 (-l) 6l (-l)
Case 2. If p < T < - w and A(u < 6wA (u , then let

_2 i/W

g(t) = (6ut - l)a(t). In Case 2, then, f g(t)dt > 0.
0

It is easy to see that (6ut) ng(t) > g(t) (t > 0, n = 1,2), so we conclude

that
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1/w

(8.9) (6 w)n / t ng(t)dt > 0 (n = 1,2)
0

From (8.9) it follows that

(8.10) 36w2 f1/W t3a(t)dt > f ta(t)dt

0 0

Now (8.3) implies

2 1/w 1/ r <

(8.11) Im D(T,)j -4 - / r 3a(r)dr + 6 /i/ra(r)dr (P < T < 2 )

0 1/W

(8.10) and (8.11) combine to yield

T / ,, / T

(8.12) Itm D(T,X)j > -4-40 f ra(r)dr + T f ra(r)dr

0 1/w

S -1)
> TA ( T in Case 2.
-1440 1

Finally, (8.6), (8.8), and (8.12) establish (8.1) in all cases. This completes

the proof of Lemma 8.1.
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9. Proofs of Theorems 3.1, 3.2, and 3.3. For Theorem 3.1(i), first

observe that Theorem 2.3(i) implies

(9.1) Iv(t,A) l < Mt- Al 2  (t > 0)

By (1.14), V(t)L- I/ 2  is bounded, for each t > 0. Moreover, if t, s > 0

and y E H,

JI[V(t) - V(s)]L- 1 / 2 I = f [v(t,A) - v(s,X)] 2A-ld(Exy, y)
1

Since v(t,X) is continuous in t and (9.1) holds, Lebesgue's Dominated

Convergence Theorem shows that V(t)L-1 /2y - V(s)L-1 /2 (t - s). v(t,X)

is differentiable in t, so the Mean Value Theorem implies

(9.2) lh-1 [U(t+h) - U(t) - hV(t)]y1 2

- j v(t+,A) - v(t,A) 2Xd(E

1 1/2 X( , Y)

(y E D1) , where n = n(tX,h) is between 0 and h. For y Dip

Ad(EXY , y) is a finite measure, so by (9.1) and dominated convergence, the

integral in (9.2) tends to zero as h - 0. Therefore U(t)y is differentiable

(t > 0) and (3.1) holds. This proves Theorem 3.1(i).

Under the hypotheses of Theorem 3.1(ii),

(9.3) sup Iv(t,X)I < Mo < Ma(0+)X 1 / 2

t >0

(see Theorem 2.2 and the remarks following it). Using (9.3) in place of (9.1),

we can argue as above and prove the results on the closed interval I+. This

completes the proof of Theorem 3.1.
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Proof of Theorem 3.2. To simplify formulas, we take d = 0, since

this does not change the argument. For i), the uniqueness assertion and

the special case g 'E 0 are just Theorem 2.1(ii) of [2]. Therefore it

suffices to establish (1.11) when f E 0 and z = 0.

Let n be a positive integer, and let g = Eg

t
nh (t) = f a(t-s)g n(s)ds

0

Then gn E B (oc( , H). Since LE n < n and Lg = EnLg is measurable,

gn belongs to Btoc(3R, ). Therefore h R + n - is continuous. By

[2, Theorem 2.1], the unique solution of

t
Z'(t) + f a(t-s) [Lz(s) + g (s)]ds = 0, z(0) = 0

0 -n

is

t
znCt) =n - U(t-s)h (s)ds

0

Then z E C(V + , D) and-n

t s
(9.4) Znt) = f a(s-r)[Lz (r) + gn(r)]drds (t > 0)o 0

But for y 0 E D, y(t) = U(t)y0  is the solution of

t
y'(t) + f a(t-s)Ly(s)ds = 0, y(0) = y0

0

(2, Theorem 2.1(i)]. Since L is closed and (3.1) holds, this means (see

Theorem 3.1)
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I:l'V(t)y YO Y(t) I: YO f ta(t-s)U(s)yods
0

t
=-f U(t-s)a(s)yods (YO I£ D)

0

Therefore

f (t-S)L in(s) ds
0

t t-s
-- f [f a(t-s-r)U(r)g n (s)dr]ds

0 0

t t-r
-- f U(r) f a(t-r-s)g n(s)ds dr

0 0

since z0  =0 (1.11) reduces to

1ZWt f V(t-s)L -1 (s)ds
0

but V(*)L-1"2  is strongly continuous on R+and IIV(.)L 1/21, E L 1 (R +

while g EPc R DV I). Therefore

V(t-s)Il~) and LV(t-s),l g(s) = V(t-s)Cll -L / (s)

are strongly measurable in s (a modified version of [2, Lemma 3.1] shows

this), and standard estimates show that z E C(iE , V). Then by (1.14),

IIL[Z(t) z ~n(t)l < f t 1 V(t-s) L-1 2  1/2 (g (s) g- S i
0

t S)Il(-E )L 1/2g(t-s) Ilds
f vl/2(s n
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But E - I strongly (n - ), and the integrand here is dcwinsmted by the
-n -

L function

w(s) = v1 /2(s) e:ss sup I 11/2(r ,

C)<r<t

so

T
JIL[z(t) - Zn(t)] I1 < f w(s)ds (0 < t < T < o)

0

Lz (t) L z(t) in H (n-*oo, t > 0)

Similarly, z n(t) z(t) (n - o) and z - z is bounded on finite intervals.

Therefore we can let n - c in (9.4), using dominated convergence, and deduce

that

t s
z(t) = f J a(s-r)[L z(r) + g(r)]dr ds

0 0

Therefore z(t) i. a solution of (1.10) with z= f = , as asserted. For

(ii), the hypotheses imply v1/2(t) < M (see Theorem 2.2), so the proof of

(i) can be repeated with minor changes. This proves Theorem 3.2.

Proof of Theorem 3.3. By (4.1), Theorem A of Section 2, and the fact that

1
(2.14) (y = -) implies (2.21), our hypotheses yield

2

(9.5) Io t I < 1 (t > 0), IIy¢t)l11 dt < -
D 0 D

Let T : g - z be the operator defined formally by the right-hand side

of (1.11) with y 0 in place of z0 , but interpret the integrals as Bochner

integrals in B ((o,t),V). If g E BC(+,D 1), Theorem 3.2(i) shows that

Tg E C(, ,D). Moreover, by (9.5) and (1.14),
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II (t) lIp <  lXo5 lD + 1l*111 B1 (I+,V ) + V3k2 +, D)

+ 11qI f vl1/2(t)dt (t CR.)C Igis(3R+, Dl) 0

With K 1 + V + Ivx/ 2 i1x,

JITK ( t ) Ii -S (. + II lBl (m ) (t E J+)

Referring to our hypotheses, we choose A, 0 < A < a, so small that
1

K E(A) < I, and choose 1 < A/2K. The TN maps the ball

s { I lY(t) Ili <A-, t E +

in the Banach space C(R+,D) into itself. y E SA is a fixed point of TN

if and only if y is a solution of (1.12) in SA'

We complete the proof by showing that TN is a contraction on S . For

z I , z 2 E SA,

I Iz (t) - TNz-2 (t) IID

If V(t-s)L-I[Nz (s) - NZ2(S)]ds i D
0

_ Kjjn z1  - z2 I1 +~"B (m ,'l )

*_ K E(A) I1l - z211 B'(O +, D)

1 liz 1 - z211
c(3+,D)

Inis proves Theorem 3.3
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